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In this paper, union, and intersection of generalised fuzzy soft sets are introduced and some of their 
basic properties are studied. The objective of this paper is to introduce the generalised fuzzy soft 
topology over a soft universe with a fixed set of parameters. Generalised fuzzy soft points, generalised 
fuzzy soft closure, generalised fuzzy soft neighbourhood, generalised fuzzy soft interior, generalised 
fuzzy soft base are introduced and their basic properties are investigated. Finally, generalised fuzzy 
soft compact spaces are introduced and a few basic properties are taken up for consideration. 
 
Key words: Fuzzy soft set, generalised fuzzy soft set, generalised fuzzy soft topology, generalised fuzzy soft 
open sets, generalised fuzzy soft closed sets, generalised fuzzy soft topological spaces, generalised fuzzy soft 
compact spaces. 

 
 
INTRODUCTION 
 
Most of our real life problems in engineering, social and 
medical science, economics, environment etc. involve 
imprecise data and their solutions involve the use of 
mathematical principles based on uncertainty and 
imprecision. To handle such uncertainties, Zadeh (1965) 
introduced the concept of fuzzy sets and fuzzy set 
operations. The analytical part of fuzzy set theory was 
practically started with the paper of Chang (1968) who 
introduced the concept of fuzzy topological spaces; 
however, this theory is associated with an inherent 
limitation, which is the inadequacy of the parametrization 
tool associated with this theory as it was mentioned by 
Molodtsov (1999). 
   In 1999, Russian researcher Molodtsov introduced the 
concept of soft set theory which is free from the above 
problems and started to develop the basics of the 
corresponding theory as  a  new  approach  for  modelling 

uncertainties. Shabir and Naz (2011) studied the 
topological structures of soft sets. 
   In recent times, many researches have contributed a lot 
towards fuzzification of soft set theory. In 2001, Maji et al. 
introduced the fuzzy soft set which is a combination of 
fuzzy set and soft set. Tanay and Burc Kandemir (2011) 
introduced topological structure of fuzzy soft set and gave 
an introductory theoretical base to carry further study on 
this concept. The study was pursued by some others 
(Chakraborty et al., (2014); Gain et al., 2013). 

In 2010, Majumdar and Samanta introduced 
generalised fuzzy soft sets and successfully applied their 
notion in a decision making problem. Yang (2011) 
pointed out that some results put forward by Majumdar 
and Samanta (2010) are not valid in general. Borah et al. 
(2012) introduced application of generalized fuzzy soft 
sets in teaching evaluation. 
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The objective of this paper is divided into three parts. In 
the first part we introduce the generalised fuzzy soft 
union, generalised fuzzy soft intersection, and several 
other properties of generalised fuzzy soft sets are 
studied. In the second part we introduce “generalised 
fuzzy soft topological spaces” over the soft universe 

 EX ,  with a fixed set of parameter. Then we discussed 

some basic properties of generalised fuzzy soft 
topological spaces with an example and define 
generalised fuzzy soft open and closed sets. By this way 
we define the generalised fuzzy soft closure, generalised 
fuzzy soft points, generalised fuzzy soft neighbourhood, 
generalised fuzzy soft interior, generalised fuzzy soft 
base and also  we established then some important 
theorems related to these spaces. Finally we define 
generalised fuzzy soft compactness and give some 
important definitions and theorems. 

This paper may be the starting point for the studies on 
“Generalised fuzzy soft topology” and all results deducted 
in this paper can be used in the theory of information 
systems. 

 
 
PRELIMINARIES 
 

Throughout this paper X  denotes initial universe, E  

denotes the set of all possible parameters for X ,  XP  

denotes the power set of X , 
XI  denotes the set of all 

fuzzy sets on X , 
EI denotes the collection of all fuzzy 

sets on E ,  EX ,  denotes the soft universe and  I  

stands for  1,0 . 

 
 
Definition 1 

 
A fuzzy set A  in X  is defined by a membership function 

 1,0: XA  whose value  xA  represents the “grade 

of membership” of x  in A  for Xx  (Zadeh, 1965). 

    If XIBA ,  then from Zadeh (1965), we have the 

following: 
 

   xxBA BA   , for all Xx . 

   xxBA BA    , for all Xx . 

      xxxBAC BAC  ,max , for all Xx . 

      xxxBAD BAD  ,min , for all Xx . 

   xxAE AE

C   1  , for all Xx . 

 
 
Definition 2 
 

Let EA . A pair  Af , is called a soft set over X   

 
 
 
 

where f  is a mapping from A  into  XP , that is, 

 XPAf :  (Molodtsov, 1999). 

In other words, a soft set is a parameterized family of 

subsets of the set X . For Ae ,  ef  may be considered 

as the set of e approximate elements of the soft 

set  Af , . 

 
 
Definition 3 
 

Let EA . A pair  AF,  is called a fuzzy soft set 

over X , where 
XIAF :  is a function, that is, for 

each Aa ,    1,0:  XFaF a  is a fuzzy set on X  

(Maji et al., 2001). 

 
 
Definition 4 
 
Let X  be the universal set of elements and E  be the 

universal set of parameters for X  (Majumdar and 

Samanta, 2010). Let 
XIEF :  and   be a fuzzy 

subset of E , that is,  1,0:  IE . Let F  be the 

mapping IIEF X :  be a function defined as 

follows:       eeFeF  ,
~

 , where   XIeF ~ and 

  EIe ~  Then F
~

 is called a generalised fuzzy soft 

set (GFSS in short) over  EX , . 

Here, for each parameter Ee , 

      eeFeF  ,
~

 indicates not only the degree of 

belongingness of the elements of X  in  eF but also the 

degree of possibility of such belongingness which is 

represented by  e . 

 
 
Example 1 
 

Let  321 ,, xxxX   be a set of three houses under 

consideration. Let  321 ,, eeeE   be a set of qualities 

where 1e expensive, 2e beautiful, 3e in the green 

surroundings. Let  1,0:  IE  be defined as 

follows:       7.0,5.0,4.0 321  eee   

We define a function  IIEF X :  as follows: 

 
         

     
















7.0,1.0\,5.0\,7.0\

,5.0,7.0\,4.0\,6.0\,4.0,5.0\,2.0\,4.0\~

3213

32123211

xxxeF

xxxeFxxxeF
F







 



 
 
 
 

Then F
~

 is a GFSS over  EX , . 

 
 
Definition 5 
 

Let F
~

 and G
~

 be two GFSS over  EX ,  (Majumdar 

and Samanta, 2010). Now F
~

 is said to be a GFS subset 

of G
~

 or G
~

 is said to be a GFS super set of F
~

  if 

  is a fuzzy subset of   

  eF  is also a fuzzy subset of   EeeG ,  

In this case we write  GF
~~~

 . 

 
 
Definition 6  
 

Let F
~

 be a GFSS over  EX ,  (Majumdar and 

Samanta, 2010). Then the complement of F
~

 , is 

denoted by 
c

F

~
 and is defined by  GF

c ~~
 , where 

        EeeFeGandee cc  , . 

Obviously    FF
cc ~~
 . 

 
 
Definition 7 
 

Union of two GFSS F
~

and G
~

 , denoted by  GF
~~~

  , 

is a GFSS H
~

, defined as IIEH X :  such that 

      eeHeH  ,
~

 , where      eGeFeH   and 

     eee   , Ee . 

Let   
 ,

~
F , where  is an index set, be a 

family of GFSSs. The union of these family is denoted 

by  



F
~~



 ; is a GFSS H
~

, defined as 

IIEH X :  such that       eeHeH  ,
~

 , 

where     


eFeH

  and     


 ee


 , 

Ee . 

 
 
Definition 8 
 

Intersection of two GFSS F
~

 and G
~

, denoted by 

 GF
~~~

 , is a GFSS M
~

, defined as  
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IIEM X :  such that       eeMeM  ,
~

 , 

where      eGeFeM   and      eee   , 

Ee . 

Let   
 ,

~
F , where  is an index set, be a 

family of GFSSs. The intersection of these family is 

denoted by  




F
~~



 , is a GFSS M
~

, defined as 

IIEM X :  such that       eeMeM  ,
~

 , 

where     


eFeM

  and     


 ee


 , 

Ee . 

 
 
Example 2 
 

Consider the GFSS F
~

 over  EX ,  given in Example 1 

 
         

     
















7.0,1.0\,5.0\,7.0\

,5.0,7.0\,4.0\,6.0\,4.0,5.0\,2.0\,4.0\~

3213

32123211

xxxeF

xxxeFxxxeF
F







 . 

 

Let G
~

 be another GFSS over  EX ,  defined as 

follows: 
 

         

     












8.0,0\,6.0\,8.0\

,4.0,4.0\,3.0\,5.0\,2.0,2.0\,5.0\,3.0\~

3213

32123211

xxxeG

xxxeGxxxeG
G







. 

 

Then 
 HGF

~~~~
  

 
         

     












8.0,1.0\,6.0\,8.0\

,5.0,7.0\,4.0\,6.0\,4.0,5.0\,5.0\,4.0\~

3213

32123211

xxxeH

xxxeHxxxeH
H







. 

 

Again 
 MGF

~~~~
  

 
         

     












7.0,0\,5.0\,7.0\

,4.0,4.0\,3.0\,5.0\,2.0,2.0\,2.0\,3.0\~

3213

32123211

xxxeM

xxxeMxxxeM
M






. 

 

         

     


















3.0,9.0\,5.0\,3.0\

,5.0,3.0\,6.0\,4.0\,6.0,5.0\,8.0\,6.0\~

3213

32123211

xxxeF

xxxeFxxxeF
F

c

cc

c







. 

 
 
Definition 9  
 
A GFSS is said to be a generalised null fuzzy soft set, 

denoted by 
~

 , if IIE X :  such that 

      eeFe  ,
~

  , where   EeeF  0  and 

  Eee  0  (Where 0 denotes the null fuzzy set) 

(Majumdar and Samanta, 2010). 
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Definition 10 
 
A GFSS is said to be a generalised absolute fuzzy soft 

set, denoted by 
1

~
 , if IIE X  :1 , where 

      eee  ,11
~

 is defined by   Eee 11  and 

  Eee  ,1  (Where ),1)(1 Xxx  (Majumdar 

and Samanta, 2010). 
 
 
Proposition 1 
 

Let F
~

 be a GFSS over  EX , , then the following holds: 

 

(i)  FFF
~~~~

  

(ii)  FFF
~~~~

  

(iii)   FF
~~~~

  

(iv)  
~~~~

F  

(v)   1
~

1
~~~

F  

(vi)  FF
~

1
~~~

   

 
Proof: Follow from the respective definitions. 
 
 
Proposition 2 
 

Let F
~

 , G
~

 and H
~

 be any three GFSS over  EX , , 

then the following holds: 
 

(i)  FGGF
~~~~~~

  

(ii)  FGGF
~~~~~~

  

(iii)      HGFHGF
~~~~~~~~~~

  

(iv)      HGFHGF
~~~~~~~~~~

  

 
Proof: Straightforward. 
 
 
Proposition 3 
 

Let F
~

 , G
~

 and H
~

 be any three GFSS over  EX , , 

then the following holds: 
 

(i)       HFGFHGF
~~~~~~~~~~~~

  

(ii)       HFGFHGF
~~~~~~~~~~~~

  

 
 
 
 
Proof: Straightforward. 
 
 
Proposition 4 
 

Let F
~

 and G
~

are two GFSS over  EX ,  , then the 

following holds: 
 

(i)    cc
GFGF

c



~~~~~~
  

(ii)    cc
GFGF

c



~~~~~~
  

 
 
Proof 
 

(i) Let  HGF
~~~~

   

then        EeeeHeH  ,,
~


, 

 

where      eGeFeH   and      eee   . 

 

                    
        

 cc

cccc

ccccc

GF

eeeGeF

eeeGeFeeHHGFThus
c









~~~
,

,,
~~~~







 
 

(ii) Let  MGF
~~~~

 then  

       EeeeMeM  ,,
~

 , where 

     eGeFeM   and      eee   . 

 
                    

        
 cc

cccc

cccc

GF

eeeGeF

eeeGeFeeMMGFThus
cc









~~~
,

,,
~~~~







 
 
 
GENERALISED FUZZY SOFT TOPOLOGICAL SPACE 
 
Here, we introduce the notion of generalised fuzzy soft 
topology over a soft universe and study some of its basic 
properties. 

 
 
Definition 11 
 

Let T  be a collection of generalised fuzzy soft sets 

over  EX , . Then T  is said to be a generalised fuzzy 

soft topology (GFS topology, in short) over  EX ,  if the 

following conditions are satisfied: 
 

(i) 
~

and 1
~

 are in T . 



 
 
 
 

(ii) Arbitrary unions of members of T belong to T . 

(iii) Finite intersections of members of T  belong to T . 
 

The triplet  ETX ,,  is called a generalised fuzzy soft 

topological space (GFST-space, in short) over  EX , . 

 
 
Definition 12 
 

Let  ETX ,,  be a GFST-space over  EX , , then the 

members of T  are said to be a GFS open sets in 

 ETX ,, . 

 
 
Definition 13 
 

Let  ETX ,,  be a GFST-space over  EX , . A GFSS 

F
~

 over  EX ,  is said to be a GFS closed in  ETX ,, , 

if its complement 
c

F

~
 belongs toT . 

 
 
Proposition 5 
 

Let  ETX ,,  be a GFST-space over  EX , . Let T   be 

the collection of all GFS -closed sets. Then 
 

(i) 
~

and 1
~

 are in T   

(ii) Arbitrary intersections of members of T   belongs to 

T   
(iii) Finite unions of members of T   belongs to T   
 
 
Proof 
 
Follows from the definition of GFST-space and De-
Morgan’s law for GFSS which is given in Proposition 4. 
 
 
Example 3 
 

  1
~

,
~
T  forms a GFS topology over  EX , , which is 

said to be the GFS indiscrete topology over  EX , . 

 
 
Example 4 
 

Let T  be the collection of all GFSS which can be defined 

over  EX , . Then T  forms a GFS topology over  EX , ; 

it is called the GFS discrete topology over  EX , . 
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Example 5 
 

Let  321 ,, xxxX   and  321 ,, eeeE   

 

We consider the following GFSS over  EX ,  defined as 

 
         

     
















6.0,3.0\,4.0\,7.0\

,5.0,8.0\,3.0\,2.0\,2.0,4.0\,5.0\,6.0\~

3213

32123211

xxxeF

xxxeFxxxeF
F









 

where 
EI  

 

         

     












5.0,3.0\,3.0\,5.0\

,3.0,5.0\,0\,1.0\,1.0,2.0\,2.0\,3.0\~

3213

32123211

xxxeG

xxxeGxxxeG
G







 

where 
EI . 

Let us consider   GFT
~

,
~

,1
~

,
~

  . Then T  forms 

a GFS topology over  EX , . 

 
 
Definition 14 
 

Let  ETX ,,  and  ETX ,, 1  be two GFST-spaces. If 

each member of T  belongs to 1T , then 1T  is called GFS 

finer (larger) than T  or (equivalently) T  is GFS coarser 

than 1T . 

 
 
Example 6 
 

Let  321 ,, xxxX   and  321 ,, eeeE  . 

Consider the GFS topology T over  EX ,  given in 

Example 3.7 
Let us consider another GFS 

topology   HGFT
~

,
~

,
~

,1
~

,
~

1  , where F
~

, G
~

 are 

given in Example 5. 
  

         

     












7.0,6.0\,8.0\,7.0\

,6.0,8.0\,5.0\,3.0\,5.0,4.0\,6.0\,7.0\~

3213

32123211

xxxeH

xxxeHxxxeH
H






. 

 

Then 1T  is finer than T . 

 
 
Proposition 6 
 

Let  ETX ,, 1  and  ETX ,, 2  be two GFST-spaces 

over the same universe  EX , , then  ETTX ,~, 21   is 

also a GFST-space over  EX , . 
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Proof 
 

(i) 21

~~1
~

,
~

TT  . 

(ii) Let   setindexanbeingiF
i

 ,:
~
  be a 

family of GFSS in 21

~ TT  . Then   1
~~

TF
i
  and 

   iTF
i

,~~
2 , so   1

~~~
TF

i
i




  and   2
~~~

TF
i

i




 . 

Hence   21

~~~~
TTF

i
i




 . 

 

(iii) Let 21

~~~
,

~
TTGF  . Then 1

~~
,

~
TGF   and 

2
~~

,
~

TGF  . 

Since 1
~~~~

TGF    and 2
~~~~

TGF   , so 

21

~~~~~
TTGF   . Hence 21

~ TT  forms a GFS 

topology over  EX , . 

 

Remark: The union of two GFS topologies over  EX ,  

may not be a GFS topology over  EX , , which follows 

from the following Example. 
 
 
Example 7 
 

Let  321 ,, xxxX   and  321 ,, eeeE   

Let us consider   FT
~

,1
~

,
~

1   and   GT
~

,1
~

,
~

2   

be two GFS topologies over  EX , , where F
~

, G
~

 are 

GFSS over  EX ,  defined as follows 

 
         

     
















5.0,1.0\,6.0\,7.0\

,3.0,5.0\,3.0\,2.0\,1.0,3.0\,4.0\,6.0\~

3213

32123211

xxxeF

xxxeFxxxeF
F







 ,     

where 
EI  

 

         

     












4.0,0\,5.0\,8.0\

,2.0,3.0\,2.0\,1.0\,3.0,4.0\,2.0\,5.0\~

3213

32123211

xxxeG

xxxeGxxxeG
G






, 

where 
EI  

 

Now,   GFTTT
~

,
~

,1
~

,
~~

21   

Let  HGF
~~~~

  

 
Where 
 

         

     












5.0,1.0\,6.0\,8.0\

,3.0,5.0\,3.0\,2.0\,3.0,4.0\,4.0\,6.0\~

3213

32123211

xxxeH

xxxeHxxxeH
H






 

 
 
 
 

Now TH 
~~


. 

Thus T  is not a GFS topology over  EX , . 

 
 

Definition 15 
 

Let  ETX ,,  be a GFST-space and F
~

 be a GFSS 

over  EX , . Then the generalised fuzzy soft closure of 

F
~

, denoted by F
~

 is the intersection of all GFS closed 

supper sets of F
~

. 

Clearly, F
~

 is the smallest GFS closed set 

over  EX ,  which contains F
~

. 

 
 

Example 8 
 

Let  321 ,, xxxX   and  21,eeE   

Let us consider the following GFSS over  EX , . 

 

          5.0,4.0\,1.0\,6.0\,4.0,2.0\,3.0\,7.0\
~

32123211 xxxeFxxxeFF   
 

          3.0,1.0\,3.0\,5.0\,5.0,5.0\,4.0\,6.0\
~

32123211 xxxeGxxxeGG  

 

          5.0,4.0\,3.0\,6.0\,5.0,5.0\,4.0\,7.0\
~

32123211 xxxeHxxxeHH    

          3.0,1.0\,1.0\,5.0\,4.0,2.0\,3.0\,6.0\
~

32123211 xxxeJxxxeJJ  

 

Let us consider the GFS topology 

  JHGFT
~

,
~

,
~

,
~

,1
~

,
~

  over  EX , . 

 

Now,  
 

          5.0,6.0\,9.0\,4.0\,6.0,8.0\,7.0\,3.0\
~

32123211 xxxeFxxxeFF
ccc

 

 

          7.0,9.0\,7.0\,5.0\,5.0,5.0\,6.0\,4.0\
~

32123211 xxxeGxxxeGG
ccc

 

 

          5.0,6.0\,7.0\,4.0\,5.0,5.0\,6.0\,3.0\
~

32123211 xxxeHxxxeHH
ccc

 

 

          7.0,9.0\,9.0\,5.0\,6.0,8.0\,7.0\,4.0\
~

32123211 xxxeJxxxeJJ
ccc

 
 

 

Clearly, cccc
JHGF 

~
,

~
,

~
,

~
 are GFS closed sets. Let us 

consider the following GFSS over  EX , . 

 

          3.0,7.0\,6.0\,3.0\,6.0,4.0\,5.0\,4.0\
~

32123211 xxxeMxxxeMM  

 

Then the GFS closure of
M

~ , denoted by
M

~  is the 

intersection of all GFS closed sets containing
M

~ . 

 

That is, cc
JJM 

~
1
~~~~

 
. 



 
 
 
 
Theorem 1 
 

Let  ETX ,,  be a GFST-space. Let F
~

 and G
~

 are 

GFSS over  EX , . Then 

 

(1)   1
~

1
~

,
~~
   

(2)  FF
~~~

  

(3) F
~

 is GFS closed if and only if  FF
~~

  

(4)  FF
~~

  

(5)  GFGF
~~~~~~

  

(6)  GFGF
~~~~~~

  

(7)  GFGF
~~~~~~~

  

 
 
Proof 
 
(1) and (2) are obvious. 

(3) Let F
~

 be a GFS closed set. By (2) we 

have  FF
~~~

 . Since F
~

 is the smallest GFS closed set 

over  EX ,  which contains F
~

, then  FF
~~~

 . 

Hence  FF
~~

 . 

Conversely, let  FF
~~

 . Since F
~

 is a GFS closed 

set, then F
~

 is a GFS closed set over  EX , . 

(4) Since F
~

 is a GFS closed set therefore, by (3) we 

have  FF
~~

  . 

(5) Let  GF
~~~

 . Then every GFS closed super set 

of G
~

 will also contain F
~

. That is, every GFS closed 

super set of G
~

 is also a GFS closed super set of F
~

. 

Hence the intersection of GFS closed super sets of F
~

 is 

contained in the GFS intersection of GFS closed super 

set of G
~

. Thus  GF
~~~

 . 

(6) Since  GFF
~~~~~

 and  GFG
~~~~~

 , so by (5) 

 GFF
~~~~~

  and  GFG
~~~~~

 . Thus, 

 GFGF
~~~~~~~

 . 
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Conversely, as  FF
~~~

  and  GG
~~~

 . So 

 GFGF
~~~~~~~

 , by (5),  GF
~~~

  is a GFS closed 

set over  EX ,  being the union of two GFS closed sets. 

Then  GFGF
~~~~~~~

 . Thus,  GFGF
~~~~~~

 . 

(7) Since  FGF
~~~~~

 and  GGF
~~~~~

 , so by (5) 

 FGF
~~~~~

  and  GGF
~~~~~

 . Thus 

 GFGF
~~~~~~~

 . 

 
 
Definition 16 
 

Let F
~

 be a GFSS over  EX , . We say 

that   
 Feex

~~,   read as   eex ,  belongs to the GFSS 

F
~

 if     10  xeF  and 

         exXyyeF ,\,0 . 

 
 
Proposition 7 
 

Every non-null GFSS F
~

 can be expressed as the union 

of all the generalised fuzzy soft points which belong 

to F
~

. 

 
 
Proof: Obvious. 

 
 
Definition 17 
 

A GFSS F
~

 in a GFST-space  ETX ,,  is called a 

generalised fuzzy soft neighbourhood [GFS-nbd, in short] 

of the GFSS G
~

 if there exists a GFS open set H
~

 such 

that  FHG
~~~~~

 . 

 
 
Definition 18 
 

A GFSS F
~

 in a GFST-space  ETX ,,  is called a 

generalised fuzzy soft neighbourhood of the generalised 

fuzzy soft point    1
~~, 

 eex  if there exists a GFS open 

set G
~

 such that   
 FGeex

~~~~,  . 



8         Afr. J. Math. Comput. Sci. Res. 
 
 
 
Proposition 8 
 

Let  ETX ,,  be a GFST-space over  EX , . Then 

 

(1) Each    1
~~, 

 eex  has a GFS nbd; 

(2) If F
~

 and G
~

 are GFS nbd of some    1
~~, 

 eex  , 

then  GF
~~~

  is also a GFS nbd of   eex , . 

(3) If F
~

 is a GFS nbd of    1
~~, 

 eex  and  GF
~~~

  , 

then G
~

 is also a GFS nbd of   eex , . 

 
 
Proof 
 
(1) is obvious. 

(2) Let F
~

 and G
~

 be the GFS neighbourhoods of 

   1
~~, 

 eex , then there exist TNH ~
~

,
~

  such that 

  
 FHeex

~~~~,   and   
 GNeex

~~~~,  . Now 

  
 Heex

~~,  and   
 Neex

~~,   implies that 

  
 NHeex

~~~~,  and TNH  ~~~~
 ; so we 

have   

 GFNHeex

~~~~~~~~,  . Thus  GF
~~~

  

is a GFS neighbourhood of   eex , . 

(3) Let F
~

 be a GFS neighbourhood of    1
~~, 

 eex  and 

 GF
~~~

 . By definition there exists a GFS open set H
~

 

such that   
 GFHeex

~~~~~~,  . 

Thus   
 GHeex

~~~~,  . Hence G
~

 is a GFS 

neighbourhood of   eex , . 

 
 
Definition 19 
 

Let  ETX ,,  be a GFST-space. Let F
~

 be a GFSS 

over  EX ,  and    1
~~, 

 eex . Then   eex ,  is said to 

be a generalised fuzzy soft interior point of F
~

 if there 

exists a GFS open set G
~

such that   
 FGeex

~~~~,  . 

 
 
Definition 20 
 

Let  ETX ,,  be a GFST-space.  Let F
~

 be a GFSS  

 
 
 
 
 

over  EX , . The generalised fuzzy soft interior of F
~

, 

denoted by 
0~

F   is the union of all generalised fuzzy soft 

open subsets of F
~

. 

Clearly, 
0~

F  is the largest generalised fuzzy soft open 

set over  EX ,  which contained in F
~

. 

 
 
Example 9 
 

Let  321 ,, xxxX   and  21,eeE  . 

Let us consider the following GFSS over  EX ,  

 

          5.0,4.0\,1.0\,6.0\,4.0,2.0\,3.0\,7.0\
~

32123211 xxxeFxxxeFF   
 

          3.0,1.0\,3.0\,5.0\,5.0,5.0\,4.0\,6.0\
~

32123211 xxxeGxxxeGG  
 

          5.0,4.0\,3.0\,6.0\,5.0,5.0\,4.0\,7.0\
~

32123211 xxxeHxxxeHH  

 

          3.0,1.0\,1.0\,5.0\,4.0,2.0\,3.0\,6.0\
~

32123211 xxxeJxxxeJJ  

 
Let us consider the GFS topology 

  JHGFT
~

,
~

,
~

,
~

,1
~

,
~

  over  EX , . 

Let us consider the following GFSS over  EX , . 

 

          7.0,8.0\,3.0\,6.0\,5.0,4.0\,5.0\,6.0\
~

32123211 xxxeNxxxeNN  

 

Then the generalised fuzzy soft interior of N
~

, denoted 

by
0~

N  , is the union of all generalised fuzzy soft open 

subsets of N
~

. 

That is,   JJN
~~~~~ 0

 . 

 
 
Theorem 2 
 

Let  ETX ,,  be a GFST-space. Let F
~

 and G
~

 are 

GFSS over  EX , . Then 

 

(1)       1
~

1
~

,
~~ 00

     

(2)    FF
~~~ 0

  

(3) F
~

 is GFS open if and only if    FF
~~ 0

  

(4)   000 ~~
 FF   



 
 
 
 

(5) 
00 ~~~~~~

 GFGF   

(6)  000 ~~~~~~
 GFGF   

(7)  000 ~~~~~~~
 GFGF   

 
 
Proof: Straightforward. 
 
 
Theorem 3 
 

A GFSS F
~

 over  EX ,  is a GFS open set if and only if 

F
~

 is a GFS nbd of each GFSS G
~

 contained in F
~

. 

 
 
Proof 
 

First suppose F
~

 is a GFS open and G
~

 is any GFSS 

contained in F
~

. We have  FFG
~~~~~

 , it follows 

that F
~

 is a neighbourhood of G
~

. 

Conversely, suppose F
~

 is a neighbourhood for every 

GFSS contained it. Since  FF
~~~

  there exist a GFS 

open set H
~

 such that  FHF
~~~~~

 . 

Hence  HF
~~

  and F
~

 is GFS open. 

 
 
Theorem 4 
 

Let  ETX ,,  be a GFST-space and F
~

 be a GFSS 

over  EX , . Then 

 

(1)     0~~ c
FF

c

   

(2)    c
FF

c

 
0~

 

 
 
Proof 
 

(1)      cc
GFandsetclosedGFSisGGF 

~~~~
|

~~~
  

=    cccc
FGandsetopenGFSisGG 

~~~~
|

~~   

=   0~ c
F  

 

(2)      c
FGandsetopenGFSisGGF

c



~~~~
|

~~~ 0
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  cccc
FGandsetclosedGFSisGG 

~~~~
|

~~   

 c
F

~
  

 
 
Definition 21 
 

Let  ETX ,,  be a GFST-space. A subfamily   of T is 

said to be a GFS base for T  if every member of T  can 

be expressed as the union of some members of . 

 

Lemma: Let  ETX ,,  be a GFST-space and   be a 

GFS base for T over  ETX ,, . Then T equals the 

collection of all unions of elements of . 

 
 
Proof: Obvious. 
 
 
Proposition 9 
 

Let  ETX ,,  be a GFST-space and T ~ . Then   is 

a GFS base forT  if and only if for any    1
~~, 

 eex  and 

any GFS open set G
~

 containing   eex , , there exists 

~
~
R  such that   

 Reex

~~,   and 
 GR

~~~
 . 

 
 
Proof: Straightforward. 
 
 
GENERALISED FUZZY SOFT COMPACT SPACES 
 
The closed and bounded sets of real line were 
considered an excellent model on which to fashion the 
generalised version of compactness in topological space. 
The concept of compactness for a fuzzy topological 
space has been introduced and studied by many 
mathematicians in different ways. The first among them 
was Chang (1968). 

In this article, we introduce and study compactness in 
generalised fuzzy soft topological perspective. 
 
 
Definition 22 
 
A family   of generalised fuzzy soft sets is a cover of a 

generalised fuzzy soft set F
~

 iff  F
~

 is contained in the 

union of members of  . That is, 

     
 ,

~
:

~~~~
GGF  

It is a generalised fuzzy soft open cover iff each 
member of   is generalised fuzzy soft open set. A sub 
cover of   is a subfamily of   which is also a cover. 
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Definition 23 
 

Let ),,( ETX be a generalised fuzzy soft topological 

space and F
~

 be a generalised fuzzy soft set, over 

),( EX  is called generalised fuzzy soft compact ( 

henceforth GFS compact) if each generalised fuzzy soft 

open cover of F
~

 has a finite sub cover. Also, 

generalised fuzzy soft topological space ),,( ETX is called 

generalised fuzzy soft compact if each generalised fuzzy 

soft open cover of 1
~

has a finite sub cover. 

 
 
Definition 24 
 
A family   of generalised fuzzy soft sets has the finite 
intersection property if the intersection of the members of 
each finite sub family of   is not the generalised null 
fuzzy soft set. 
 
 
Theorem 5 
 
A generalised fuzzy soft topological space is GFS 
compact if and only if each family of GFS closed sets with 
the finite intersection property, has a generalised non-
empty fuzzy soft intersection. 
 
 
Proof 
 

Let ),,( ETX be a GFS compact space and let 

   
 :

~
G  be a collection of GFS closed 

subsets of ),,( ETX with the FIP and suppose, if possible, 

    
~

:
~~  G . Then      1

~
:

~~ cG  or 

    1
~

:
~~ 



c
G  by De-Morgan law. This 

means that   :
~ c
G  is open cover of 1

~
, 

since   
 :

~
G are GFS closed. Since ),,( ETX is 

GFS compact, we have that    


 1
~

:
~~

1





c
n

G  and 

so by De-Morgan law    








 1

~
:

~~
1

c
n

G 




 which 

implies that    



~

:
~~

1



G

n

.  However, this 

contradicts the FIP. Hence we must have 

    
~

:
~~  G . 

Conversely, let    
 :

~
G  be a GFS open 

cover of 1
~

 so that 

 
 
 
 

   
 :

~~1
~

G  

       
 :

~~:
~~~ cc

GG  

 

Thus,   
 :

~ c
G  is a collection of GFS closed 

sets with generalised non-null fuzzy soft intersection and 
so by hypothesis this collection does not have the FIP. 
Hence there exists a finite number of GFSS 

  nG
c

,......2,1:
~




 such that 

      cc
nGnG ,....2,1:

~~,......2,1:
~~~

 
 . 

This implies that   nG ,.....2,1:
~~1

~
 

 . 

Hence ),,( ETX  is GFS compact. 

 
 
Conclusion 
 
The proposed work is basically a theoretical one. If these 
theoretical back-ups are properly nurtured and fruitfully 
developed, it will definitely usher in various nice 
applications in the fields of Engineering Science, Medical 
Science and Social Sciences, by skilfully analyzing and 
interpreting imprecise data mathematically. 
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INTRODUCTION 

 
Algebraic structures play a prominent role in mathematics with 

wide ranging applications in many disciplines such as 

theoretical physics, computer sciences, control engineering, 

information sciences, coding theory, topological spaces, and 

the like. 

Nachbin (1965) initiated the study of topological ordered 

spaces. Levine (1970) introduced the class of g-closed sets, a 

super class of sets in 1970. Veera Kumar (2000) introduced a 

new class of sets, called g*-closed sets in 2000, which is 

properly placed in between the class of closed sets and the class 

of g-closed sets. Veera Kumar (2002) introduced the concept of 
i-closed, d-closed and b-closed sets in 2001. Srinivasarao 

introduced ig-closed, dg-closed, bg-closed, ig*-closed, dg*-

closed and bg*-closed sets in 2014. In this paper, Srinivasarao 

discusses the possible applications of ig, dg and bg – closed 

type sets in topological ordered spaces. 

A topological ordered space is a triple (X, , ≤), where is a 
topology on X, Where X is a non-empty set and ≤ is a partial 

order on X. 
 
 

Definition 1 
 

For   any   xX,  {yX/x≤y}  will  be  denoted  by  [x, ]  and 

{yX/y≤x} will be denoted by [, x]. A subset A of a 

topological ordered space (X, , ≤) is said to be increasing if A 

= i(A) where i(A) = 
Aa

 [a, ] (Veera Kumar, 2002). 

 
 

Definition 2 
 

For any xX, {yX/y≤x} will be denoted by [, x]. A subset 

A of a topological ordered space (X, , ≤) is said to be 

decreasing if A = d(A), where d(A) =
Aa

[a, ] (Veera 

Kumar, 2002). 
 
 

PRELIMINARIES 

 

Definition 1 

 

A subset A of a topological space (X,  ) is called 

 

1) a generalized closed set (briefly g-closed) (Levine, 1970) if 

cl(A)U whenever AU and U is open in (X, ). 
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2) a g*
-closed set (Veera Kumar, 2000) if cl(A)U whenever 

AU and U is g-open in (X, ). 

 

 

Definition 2 

 

A subset A of a topological space (X,  , ≤) (Veera Kumar, 

2002; Srinivasarao, 2014) is called 

 

1) an i-closed set if A is an increasing set and closed set. 

2) a d-closed set if A is a decreasing set and closed set. 
3) a b-closed set if A is both an increasing and decreasing set 

and a closed set. 

4) ig-closed set if icl(A)U whenever AU and U is open in 

(X, ). 

5) dg-closed set if dcl(A)U whenever AU and U is open 

in (X, ). 

6) bg-closed set if bcl(A)U whenever AU and U is open 

in (X, ). 

 

 
Theorem 1: Every closed set is a g-closed set 

 
The following example supports that a g-closed set need not be 

closed set in general (Veera Kumar, 2000). 

 

 

Example 1 

 

Let X = {a, b, c}, = {, X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ≤1) is a topological 

ordered space. Closed sets are , X, {b, c}. g-closed sets are , 
X, {b}, {c}, {a, b}, {b, c}, {c,a}. Let A={c}. Clearly A is a g-

closed set but not a closed set (Veera Kumar, 2000). 

 
 
Theorem 2: Every g*-closed set is a g-closed set 

 
The following example supports that a g-closed set need not be 

a g*-closed set in general (Veera Kumar, 2000). 

 
 
Example 2 

 

Let X = {a, b, c}, 2 = {, X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ≤1) are topological 

ordered spaces. g-closed sets are , X, {b}, {c}, {a,b}, {b, c}, 

{c, a}. g*-closed sets are , X, {b, c}.Let A={c}. Then A is a 
g-closed set but not a g*-closed set (Veera Kumar, 2000). 

 
 
Theorem 3: Every i-closed set is an ig-closed set 

 
The following example supports that an ig-closed set need not 

be an i-closed set in general (Srinivasarao, 2014). 
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Example 3 

 

Let X = {a, b, c}, 2= {, X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ≤2) is a topological ordered 
space (Srinivasarao, 2014). 

ig-closed sets are Φ, X, {b}, {a, b}. i-closed sets are , x. Let 

A = {b} or {a, b}. Clearly, A is an ig-closed set but not an i-
closed set. 

 

 
Theorem 4: Every d-closed set is a dg-closed set 

 
The following example supports that a dg-closed set need not 

be d-closed set in general (Srinivasarao, 2014). 

 

 

Example 4 

 

Let X = {a, b, c}, 2 = {, X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ≤2) is a topological ordered 

space (Srinivasarao, 2014). dg-closed sets are , X, {c}, {b, c}. 

d-closed sets are , X, {b, c}. Let A = {c}. Clearly, A is a dg-
closed set but not a d-closed set. 

 

 
Theorem 5: Every b-closed set is a bg-closed set 

 
The following example supports that a bg-closed set need not 

be a b-closed set in general (Srinivasarao, 2014). 

 

 

Example 5 
 

Let X = {a, b, c}, 
2  = { , X, {a}} and ≤3 = {(a, a), (b, b), (c, 

c), (a, b), (a, c)}. Clearly (X, ,2  ≤3) is a topological ordered 

space. bg-closed sets are  , X, {c}. b-closed sets are  , X. 

Let A = {c}. Clearly A is a bg-closed set but not a b-closed set 

(Srinivasarao, 2014). 

 
 
Theorem 6: Every bg-closed set is an ig-closed set 

 
The converse of the above theorem need not be true 
(Srinivasarao, 2014). This will be justified from the following 

example. 

 

 
Example 6 
 

Let X = {a, b, c}, 1  = { , X, {a}, {b}, {a, b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,1  ≤1) is a 

topological ordered space (Srinivasarao, 2014).  

Let A = {c}. Clearly A is an ig-closed set but not a bg-closed 

set. 
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Theorem 7: Every bg-closed set is a dg-closed set 
 
The converse of the above theorem need not be true 

(Srinivasarao, 2014). This will be justified from the following 

example. 

 

 

Example 7 

 

Let X = {a, b, c}, 
1  = { , X, {a}, {b}, {a, b}} and ≤3 = {(a, 

a), (b, b), (c, c), (a, b), (a, c)}. Clearly (X, ,1 ≤3) is a 

topological ordered space (Srinivasarao, 2014). Let A = {a, c}. 

Clearly A is a dg-closed set but not a bg-closed set. 

 

 

Theorem 8: Every b-closed set set is an i-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 

 

 

Example 8 

 

Let X = {a, b, c}, 
1  = { , X, {a}, {b}, {a, b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,1 ≤1) is a 

topological ordered space (Srinivasarao, 2014). i-closed sets 

are  , X, {c}, {b, c}. b-losed sets are  , X. Let A = {c} or 

{b, c}. Clearly A is an i-closed set but not a b-closed set. 
 

 

Theorem 9: Every b-closed set is a d-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 9 
 

Let X = {a, b, c}, 1  = { , X, {a}, {b}, {a, b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  ≤2) is a 

topological ordered space (Srinivasarao, 2014). d-closed sets 

are  , X, {c}, {b, c}. b-closed sets are  , X. Let A = {c} or 

{b, c}. Clearly A is a d-closed set but not a b-closed set.  

 

 

Theorem 10: Every ig
*
-closed set is an ig-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 

 

 

Example 10 

 

Let X = {a, b, c}, 2  = { , X, {a}}  and   ≤1 =  {(a, a),  (b, b), 

 

 

 

 

(c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space (Srinivasarao, 2014). ig-closed sets are  , X, 

{c}, {b, c}. ig*-closed sets are  , X, {b, c}. Let A = {c}. 

Clearly A is an ig-closed set but not a ig*-closed set. 
 

 

Theorem 11: Every dg
*
-closed set is an dg-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 11 
 

Let X = {a, b, c}, 
2  = { , X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2 ≤2) is a topological ordered 

space (Srinivasarao, 2014). dg-closed sets are  , X, {c}, {b, 

c}. dg*-closed sets are  , X, {b, c}. Let A = {c}. Clearly A is 

an dg-closed set but not a dg*-closed set. So the class of dg-

closed sets properly contains the class of all dg*-closed sets. 
 

 

Theorem 12: Every bg
*
-closed set is a bg-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 12 
 

Let X = {a, b, c}, 
2  = { , X, {a}} and ≤3 = {(a, a), (b, b), (c, 

c), (a, b), (a, c)}. Clearly, (X, ,2 ≤3) is a topological ordered 

space. bg*-closed sets are  , X. bg-closed sets are , X, {c} 

(Srinivasarao, 2014). Let A = {c}. Clearly A is bg-closed set 

but not a bg*-closed set. So the class of bg-closed sets properly 

contains the class of all bg*-closed sets. 
 

 

Theorem 13: Every bg
*
-closed set is an ig

*
-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 13 
 

Let X = {a, b, c}, 3  = { , X, {a}, {b, c}} and ≤3 = {(a, a), (b, 

b), (c, c), (a, b), (a, c)}. Clearly (X, ,3  ≤3) is a topological 

ordered space (Srinivasarao, 2014). Let A = {b}. Clearly A is 

an ig*-closed set but not a bg*-closed set.  
 
 

Theorem 14: Every bg
*
-closed set is an dg

*
-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example.  



 

 

 

 

Example 14 
 

Let X = {a, b, c}, 
1  = { , X, {a}, {b}, {a, b}} and ≤3 = {(a, 

a), (b, b), (c, c), (a, b), (a, c)}. Clearly (X, ,1  ≤3) is a 

topological ordered space (Srinivasarao, 2014). Let A = {a, c}. 

Clearly A is a dg*-closed set but not a ig*-closed set. The class 

of all dg*-closed sets properly contains the class of all bg*-

closed sets. 

 

 

Theorem 15: Every i-closed set is an ig
*
-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 
2014). This will be justified from the following example. 
 
 

Example 15 
 

Let X = {a, b, c}, 3  = { , X, {a}, {b, c}} and ≤4 = {(a, a), 

(b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,3  ≤4) is a topological 

ordered space. ig*-closed sets are , X, {b, c}. i-closed sets are 

 , X. Let A = {b, c}. Clearly A is a ig*-closed set but not an i-

closed set (Srinivasarao, 2014). The class of all ig*-closed sets 

properly contains the class of all i-closed sets. 

 

 

Theorem 16: Every d-closed set is a dg
*
-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 16 
 

Let X = {a, b, c}, 
4  = { , X, {a}, {b, c}} and ≤2 = {(a, a), 

(b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,4  ≤2) is a topological 

ordered space (Srinivasarao, 2014). dg*-closed sets are  , X, 

{b, c}. d-closed sets are  , X. Let A = {b, c}. Then A is dg*-

closed set but not a d-closed set. The class of all dg*-closed sets 

properly contains the class of all d-closed sets. 
 

 

Theorem 17: Every b-closed set is a bg
*
-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 17 

 

Let X = {a, b, c}, 6  = { , X, {a}, {b}, {a, b}{a, c}} and ≤7 

= {(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)}. Clearly (X, ,6  ≤7) 

is a topological ordered space (Srinivasarao,  2014).  bg*-closed 
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sets are  , X, {b}. b-closed sets are  , X. Let A = {b}. Then 

A is bg*-closed set but not a b-closed set. The class of all bg*-

closed sets properly contains the class of all b-closed sets.  
 

 

Theorem 18: Every bg
*
-closed set is an ig-closed set 

 

Then every bg*-closed set is an ig-closed set (Srinivasarao, 

2014). The converse of above theorem need not be true. This 

will be justified from the following example. 
 

 

Example 18 
 

Let X = {a, b, c}, 
1  = { , X, {a}, {b}, {a, b}} and ≤3 = {(a, 

a), (b, b), (c, c), (a, b), (a, c)}. Clearly (X, ,1  ≤3) is a 

topological ordered space (Srinivasarao, 2014). bg*-closed sets 

are  , X. ig-closed sets are  , X, {c}, {b, c}. Let A = {c} or 

{b, c}. Clearly A is an ig-closed set but not a bg
*
-closed set. 

The class of all ig-closed sets properly contains the class of all 

bg*-closed sets. 
 

 

Theorem 19: Every bg
*
-closed set is a dg-closed set 

 

The converse of above theorem need not be true (Srinivasarao, 

2014). This will be justified from the following example. 
 

 

Example 19 
 

Let X = {a, b, c}, 
1  = { , X, {a}, {b}, {a, b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}.Clearly (X, ,1 ≤2) is a 

topological ordered space (Srinivasarao, 2014). bg*-closed sets 

are  , X. dg-closed sets are  , X, {c}, {b, c}. Let A = {c} or 

{b, c}. Clearly A is a dg-closed set but not a bg*-closed set. 
 
 

APPLICATIONS OF g-CLOSED SETS 
 

We introduce the following definitions. 
 

 

Definition 1 
 

A topological ordered space (X, ,  ) is called 
 

i) a i T1/2 space, if every ig-closed set is closed. 

ii) a dT1/2 space, if every dg-closed set is closed. 

iii) a bT1/2 space, if every bg-closed set is closed. 
 

 

Theorem 1: Every iT1/2 space is bT1/2 space 
 

Proof 
 

Let (X,  , ≤) be iT1/2 space. Let A be bg-closed subset of 

X.Then A is an ig-closed set.Since (X,  , ≤) is an iT1/2 space 

then  ‘A’  is  a  closed  set.  Therefore  every  bg-closed  set is a  
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closed set. Hence (X,  ) is a bT1/2 space. The converse of the 

above theorem need not be true. This will be justified from the 

following example. 
 

 

Example 1 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2  ≤1) is a topological 

ordered space. bg-closed sets are , X. Closed sets are  , X, 

{b, c}. Here every bg-closed set is a closed set. Therefore (X, 

,2  ≤3) is bT1/2 space. 

 

 

Theorem 2: Every dT1/2 space is bT1/2 space 
 

Proof 
 

Let (X,  , ≤) be dT1/2 space. We show that (X,  , ≤) is a bT1/2 

space. Let A be bg-closed subset of X. Then A is a dg-closed 

subset of X. Since (X,  , ≤) is dT1/2 space, we have A is a 

closed set. Thus every dT1/2 space is bT1/2 space. The converse 

of the above theorem need not be true. This will be justified 

from the following example. 
 

 

Example 2 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤2 = {(a, a), (b, b),(c, 

c), (a, b), (c, b) }. Clearly (X, ,2 ≤2) is a topological ordered 

space. bg-closed sets are , X . Closed sets are  , X. Here 

every bg-closed set is a closed set. Hence (X, ,2 ≤2) is bT1/2 

space. dg-closed sets are  , X, {c}, {b, c }. Here {c} or {b, c} 

is not a closed set. Thus (X, ,2 ≤2) is not a dT1/2 space. 

 

 

Theorem 3: iT1/2 space and dT1/2 space are independent 

notions as will be seen in the following examples 
 

Example 3 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b),(c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space. Closed sets are  , X, {b, c }. ig-closed sets are 

 , X, {c}, {b, c} and dg-closed sets are  , X. Here every dg-

closed set is a closed set. Thus (X, ,2 ≤1) is dT1/2 space . Let 

A={c}. Clearly a is an ig-closed set but not a closed set. Hence 

(X, ,2 ≤1) is not a iT1/2 space. 

 

 

Example 4 
 

Let X = {a, b, c}, 3  = { , X, {a},  {b, c}}  and  ≤3 =  {(a, a), 

 

 

 

 

(b, b), (c, c), (a, b), (a, c)}. Clearly (X, ,3  ≤3) is a topological 

ordered space. Closed sets are  , X, {a}, {b, c }. ig-closed sets 

are  , X. dg-closed sets are  , X, {c}. Here every ig-closed 

set is a closed. Thus (X, ,3 ≤3) is iT1/2 space. Let A={c}. 

Clearly A is dg-closed set but not a closed set. Hence (X, 

,3 ≤3) is not a dT1/2 space. 

We thus introduce the following definitions. 
 

 

Definition 2 
 

The topological ordered space (X, ,  ) is called 

 

i) iTi,1/2 space if every ig-closed set is an i-closed set. 

ii) dTd,1/2 space if every dg-closed set is an d-closed set. 

iii) bTb,1/2 space if every bg-closed set is a b-closed set. 

iv) CTi space if every closed set is an i-closed set. 

v) cTd space if every closed set is a d-closed set. 

vi) cTb space if every closed set is a b-closed set. 

vii) iTb space if every i-closed set is a b-closed set. 

viii) dTb space if every d-closed set is a b-closed set. 
 
 

Theorem 4: Every cTb space is a cTi space 
 

Proof 
 

Let (X,  , ≤) be cTb space. We show that (X,  , ≤) is a cTi 

space. Let A be a closed set. Since (X,  , ≤) is cTb space, then 

A is a b-closed set. Then A is an i-closed set. Therefore every 

closed set is an i-closed set. Then (X,  , ≤) is a cTi space. 

Hence every cTb space is a cTi space. The converse of above 

theorem need not be true. This will be justified from the 

following example. 

 

 

Example 5 

 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space. Closed sets are  , X, {b, c }. i-closed sets are 

 , X, {b, c} and closed sets are  , X . Here every closed set 

is an i-closed set. Let A = {b, c}. Clearly A is a closed set but 

not a b-closed set. Thus (X, ,2 ≤1) is cTi space but not cTb 

space. 

 

 

Theorem 5: Every cTb space is a cTd space 
 

Proof 
 

Let (X,  , ≤) be cTb space. We show that (X,  , ≤) is a cTd 

space. Let A be a closed set. Since (X,  , ≤) is cTb  space,  then  



 

 

 

 

A is a b-closed set. Then A is a d-closed set. Therefore every 

closed set is a d-closed set. Then (X,  , ≤) is a cTd space. 

Hence every cTb space is a cTd space. The converse of the 

above theorem need not be true. This will be justified from the 

following example. 

 

 

Example 6 

 

Let X = {a, b, c}, 2 = { , X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2 ≤2) is a topological ordered 

space. closed sets are  , X, {b, c }. d-closed sets are  , X, {b, 

c} and b-closed sets are  , X . Here every closed set is a d-

closed set. Let A = {b, c}. Clearly A is a closed set but not a b-

closed set. Thus (X, ,2  
≤1) is cTd space but not cTb space. 

 

 

Theorem 6: Every cTb space is a iTb space 

 

Proof 

 

Let (X,  , ≤) be cTb space. We show that (X,  , ≤) is a iTb 

space. Let A be an i-closed set. Then A is a closed set. Since 

(X,  , ≤) is cTb space, then A is a b-closed set.. Therefore 

every i-closed set is a b-closed set. Then (X,  , ≤) is an iTb 

space. Hence every cTb space is a iTb space. The converse of the 

above theorem need not be true. This will be seen in the 

following example. 

 

 

Example 7 
 

Let X = {a,b,c}, 1  = { , X, {a}, {b}, {a, b}} and ≤2 = {(a, 

a), (b, b),(c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Closed sets are  , X, {c}, {a, c}, 

{b, c }. i-closed sets are  , X . b-closed sets are  , X. Clearly 

every i-closed set is a b-closed set where as every closed set is 

not a b-closed set. Let A = {c} or {a, c} or {b, c}. Clearly A is 

a closed set but not a b-closed set. Thus (X, ,2 ≤2) is cTd space 

but not cTb space. 

 

 

Theorem 7: Every cTb space is dTb space 
 

Proof 

 

Let (X,  , ≤) be cTb space. We show that (X,  , ≤) is a dTb 

space. Let A be a d-closed set then A is a closed set. Since (X, 

 , ≤) is cTb space then A is a b-closed set. Thus every d-closed 

set is a b-closed set. Thus every cTb space is dTb space. The 

converse of the above theorem need not be true. This will be 

justified from the following example. 
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Example 8 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a, b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Here closed sets are  , X, 

{c}, {b,c}, {a,c}. d-closed sets are  , X and b-closed sets are 

 , X. Let A = {c} is not a b-closed set. Every d-closed sets is 

b-closed set. Thus (X, ,1 ≤1) is a dTb space but not cTb space. 

 
 

Theorem 8: The spaces cTi and cTd are independent notions 

as will be seen in the following examples 
 

Example 9 
 

Let X = {a, b, c}, ,1  = { , X, {a}, {b}, {a, b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Closed sets are  , x, {c}, {b,c}, 

{a,c}. i-closed sets are  , X. b-closed sets are  , x. 

Clearly, every i-closed set is a b-closed set where as every 

closed set is not a b-closed set. Thus (X, ,1  ≤2) is an iTb space 

but not cTb space. 
 
 

Example 10 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a,b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b,c), (a,c)}. Here closed sets are  , X, 

{c}, {b,c}, {a,c}. d-closed sets are  , X and b-closed sets are 

 , X. Let A = {c} is not a b-closed set. Every d-closed sets is 

b-closed set. Thus (X, ,1 ≤1) is a dTb space but not cTb space.  

 

 

Theorem 9: The spaces are iTb and dTb are independent 

notions as will be seen in the following examples 
 

Example 11 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a,b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a,c)}. Clearly (X, ,1  
≤1) is a 

topological ordered space. d-closed sets are  ,x . i-closed sets 

are  , X, {c}, {b, c}. b-closed sets are 
,
 x. 

Clearly every d-closed set is a b-closed set where as every i-

closed set is not a b-closed set. Thus (X, ,1  ≤1) is an dTb space 

but not iTb space. 
 

 

Example 12 
 

Let  X =  {a, b, c}, ,1  = { , X, {a}, {b}, {a,b}} and ≤2 = {(a, 
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a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Here i-closed sets are  , X. d-

closed sets are  , X, {c}, {b, c} and b-closed sets are  , X. 

Let A = {c} or {b, c}. Clearly A is a d-closed set but not a b-

closed set. Every i-closed sets is a b-closed set where as every 

d-closed set is not a b-closed set. Thus (X, ,1 ≤1) is a dTb space 

but not cTb space. 
 

 

Theorem 10: The spaces iTb and cTi are independent notions 

as will be seen in the following example 
 

Example 13 
 

Let X = {a, b, c}, ,1  = { , X, {a}, {b}, {a, b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Here i-closed sets are  , X. Closed 

sets are  , X, {c}, {b, c}, {a, c} and b-closed sets are  , X. 

Let A = {c} or {b, c}. Clearly A is a closed set but not a b-

closed set. Every i-closed sets is a b-closed set where as every 

closed set is not a b-closed set. Thus (X, ,1 ≤1) is a iTb space 

but not cTi space. 
 

 

Example 14 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space. Closed sets are  , X, {b, c }. i-closed sets are 

 , X, {b, c} and b-closed sets are  , X . Here every closed 

set is an i-closed set. Let A = {b, c}. Clearly A is an i-closed 

set but not a b-closed set. Thus (X, ,2 ≤1) is cTi space but not 

iTb space. 
 

 

Theorem 11: The spaces dTb and cTd are independent 

notions as will be seen in the following examples 
 

Example 15 
 

Let X = {a, b, c}, ,1  = { , X, {a}, {b}, {a,b}} and ≤6 = {(a, 

a), (b, b), (c, c), (b, a), (a, c), (b, c)}. Clearly (X, ,1  ≤6) is a 

topological ordered space. Here closed sets are  , X, {b, c} . 

d- closed sets are  , X and b-closed sets are  , X. Let A = {b, 

c}. Clearly A is a closed set but not a d-closed set. Every d-

closed sets is a b-closed set. Thus (X, ,1 ≤6) is a dTb space but 

not cTd space. 
 

 

Example 16 
 

Let X = {a,b,c}, 2  = { , X, {a}} and ≤2 = {(a, a),  (b, b),  (c, 

 

 

 

 

c), (a, b), (c, b)}. Clearly (X, ,2  
≤2) is a topological ordered 

space. Closed sets are  , X, {b, c }. d-closed sets are  , X, 

{b, c}. b-closed sets are  , X. Clearly every closed set is a d-

closed set where as every d-closed set is not a b-closed set.Let 

A = {b,c}. Clearly A is a closed set but not a b-closed set. Thus 

(X, ,2 ≤2) is cTd space but not dTb space. 

 

 

Theorem 12: The spaces iTi,1/2 and bTb,1/2 are independent 

notions as will be seen in the following examples 
 

Example 17 
 

Let X = {a, b, c}, ,6  = { , X, {a}, {b}, {a,b}, {a, c}} and 

≤7 = {(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)}. Clearly (X, ,6  

≤7) is a topological ordered space. Here i-closed sets are  , X, 

{a, c} . ig- closed sets are  , X, {a, c} and b-closed sets are 

 , X bg- closed sets are  , X, {b}. Clearly every ig-closed set 

is an i-closed set. So(X, ,6  
≤7) is iTi,1/2 space. Let A = {b} . 

Clearly A is a bg-closed set but not a b-closed set. Thus (X, 

,6  ≤7) is not a bTb,1/2 space. 

 

 

Example 18 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space. i-closed sets are  , X, {b, c }. ig-closed sets are 

 , X, {c}, {b, c} and b-closed sets are  , X. Clearly every 

bg-closed set is a b-closed set. Let A = {c}. Clearly A is an ig-

closed set but not an i-closed set. 

Hence (X, ,2 ≤1) is bTb,1/2 space but not a iTi,1/2space. 
 

 

Theorem 13: The spaces dTd,1/2 and bTb,1/2 are independent 

notions as will be seen in the following examples 
 

Example 19 
 

Let X = {a,b,c}, 2  = { , X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2  
≤2) is a topological ordered 

space. d-closed sets are  , X, {b, c }. dg-closed sets are  , X, 

{c}, {b, c}. bg-closed sets are  , X and b-closed sets are  , 

X. Clearly every bg-closed set is a b-closed set. Let A = {c}. 

Clearly A is a dg-closed set but not a d-closed set. Hence (X, 

,2  
≤2) is a bTb,1/2 space but not a dTd,1/2 space. 

 

 

Example 20 
 

Let X = {a, b, c}, ,6  = { , X, {a},  {b},  {a,b},  {a, c}}  and 



 

 

 

 

≤7 = {(a, a), (b, b), (c, c),(b, c), (c, a), (b, a)}. Clearly (X, ,6  

≤7) is a topological ordered space. Here d-closed sets are  , X, 

{b}, {b, c} . dg- closed sets are  , X, {b}, {b, c} and b-closed 

sets are  , X bg- closed sets are  , X, {b} . Clearly every dg-

closed set is a d-closed set. So(X, ,6  
≤7) is dTd,1/2 space. Let A 

= {b} . Clearly A is a bg-closed set but not a b-closed set. Thus 

(X, ,6  ≤7) is not a bTb,1/2 space. 

 

 

Theorem 14: The spaces iTi,1/2 and bTb,1/2 are independent 

notions as will be seen in the following examples 
 

Example 21 
 

Let X = {a, b, c}, ,6  = { , X, {a}, {b}, {a,b}, {a, c}} and 

≤7 = {(a, a), (b, b), (c, c),(b, c), (c, a), (b, a)}. Clearly (X, ,6  

≤7) is a topological ordered space. Here i-closed sets are  , X, 

{a, c} . ig- closed sets are  , X, {a, c} and b-closed sets are 

 , X bg- closed sets are  , X, {b} . Clearly every ig-closed 

set is an i-closed set. So (X, ,6  
≤7) is iTi,1/2 space. Let A = 

{b}. Clearly A is a bg-closed set but not a b-closed set. Thus 

(X, ,1 ≤6) is not a bTb,1/2 space. 

 

 

Example 22 
 

Let X = {a, b, c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (b, c), (a, c)}. Clearly (X, ,2 ≤1) is a topological 

ordered space. i-closed sets are  , X, {b, c }. ig-closed sets are 

 , X, {c}, {b, c} and b-closed sets are  , X . Clearly every 

bg-closed set is a b-closed set. Let A = {c}. Clearly A is an ig-

closed set but not an i-closed set. 

Hence (X, ,2 ≤1) is bTb,1/2 space but not a iTi,1/2space. 

 

 

Theorem 15: Every iTb space is an b T b,½ space 
 

Proof 
 

Let be (X,  , ≤) iTb space. Now we (X,  , ≤) is a bT b,1/2 

space. Let A be a bg-closed set. Then A is an ig-closed set. 

Since (X,  , ≤) is iTb space then A is a b-closed set. Therefore 

every bg-closed set is a b- closed set Hence every iTb space is 

an bTb,1/2 space. 

The converse of the above theorem need not be true. This 

will be justified from the following example. 
 

 

Example 23 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b}, {a,b}}  and  ≤1 =  {(a,  
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a), (b, b), (c, c), (a, b), (b,c),(a,c)}. Here i-closed sets are  , X, 

{c},{b,c}. b-closed sets are  , X and bg-closed sets are  , X. 

Let A = {c} or {b, c}. Clearly A is an i-closed set but not a b-

closed set. Every bg-closed sets is a b-closed set. Thus (X, 

,1 ≤1) is a bTb,1/2 space but not iTb space. 

 

 
Theorem 16: Every dTb space is an b T b,½ space 

 
Proof 

 
Let be (X,  , ≤) dTb space. Now we (X,  , ≤) is a bT b,1/2 

space. Let A be a bg-closed set. Then A is a dg-closed set. 

Since (X,  , ≤) is dTb space then A is a b-closed set. Therefore 

every bg-closed set is a b- closed set Hence every dTb space is 

an bTb,1/2 space. The converse of the above theorem need not be 

true. This will be justified from the following example. 

 

 
Example 24 

 

Let X = {a, b, c}, ,1  = { , X, {a}, {b}, {a,b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Here b-closed sets are  , X. d-

closed sets are  , X, {c}, {b, c} and bg-closed sets are  , X. 

Let A = {c} or {b, c}. Clearly A is a d-closed set but not a b-

closed set. Every bg-closed sets is a b-closed set where as every 

d-closed set is not a b-closed set. Thus (X, ,1 ≤1) is a bTb,1/2 

space but not dTb space. 

 

 
Theorem 17: Every iTb space is an iT1/2 space 

 
Proof 

 

Let (X,  , ≤) be iTb space. we show that (X,  , ≤) is a iT1/2 

space. Let A be a ig-closed set. Since (X,  , ≤) is iTb space 

then A is a b-closed set. Then A is a closed set. Thus every i-

closed set is a closed set. Thus every iTb space is iT1/2 space. 

The converse of the above theorem need not be true. This 

will be justified from the following example. 

 

 

Example 25 

 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a, b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b,c), (a,c)}. Here ig-closed sets are  , 

X, {c},{b,c}. b-closed sets are  , X and closed sets are  , X, 

{c}, {b, c}, {c, a}. Let A = {c} or {b, c}. Clearly A is an ig-

closed set but not a b-closed set. Every ig-closed sets is a 

closed set. Thus (X, ,1 ≤1) is a iTb space but not iT1/2 space. 
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Theorem 18: Every dTb space is an dT1/2 space 
 

Proof 

 

Let (X,  , ≤) be dTb space. we show that (X,  , ≤) is a dT1/2 

space. Let A be a dg-closed set. Since (X,  , ≤) is dTb space 

then A is a b-closed set. Then A is a closed set. Thus every dg-

closed set is a closed set. Thus every dTb space is dT1/2 space. 

The converse of the above theorem need not be true. This 

will be justified from the following example. 

 

 

Example 26 

 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a,b}} and ≤2 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤2) is a 

topological ordered space. Here b-closed sets are  , X . dg-

closed sets are  , X, {c}, {b, c} and closed sets are  , X, {c}, 

{b, c}, {c, a}. Let A = {c} or {b, c}. Clearly A is a dg-closed 

set but not a b-closed set. Every dg-closed sets is a closed set 
where as every d-closed set is not a b-closed set. Thus (X, 

,1 ≤1) is a dT1/2 space and not a dTb space. 

 

 
Theorem 19: The spaces cTi and dTb are independent 

notions as will be seen in the following examples 

 
Example 27 

 

Let X = {a, b, c}, ,1  = { , X, {a}, {b},{a,b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,1  
≤1) is a 

topological ordered space. Here b-closed sets are  , X, {c}. d-

closed sets are  , X . Closed sets are  , X, {c}, {b, c}, {a, c}. 

i-closed sets are  , X, {c}, { b, c}. Let A = {a, c}. Clearly A is 

a closed set but not an i-closed set. .Every d- closed set is a b-

closed set where as every closed set is not an i-closed set. Thus 

(X, ,1 ≤1) is a dTb space and not a cTi space. 

 

 

Example 28 

 

Let X = {a, b, c}, ,8  = { , X, {a,b}} and ≤3 = {(a, a), (b, b), 

(c, c), (a, b), (a, c)}. Clearly (X, ,8  
≤3) is a topological 

ordered space. Here b-closed sets are  , X, {c} . d-closed sets 

are  , X, {c}, {b, c} and closed sets are  , X, {c}. i-closed 

sets are  , X, {c}. Let A = {b, c}. Clearly A is a d-closed set 

but not a b-closed set. Every closed sets is an i-closed set where 

as every d-closed set is not a b-closed set. Thus (X, ,1 ≤1) is a 

cTi space and not a dTb space. 

 

 

 

 

Theorem 20: The spaces dTd,1/2 and iTi,1/2 are independent 

notions as will be seen in the following examples 
 

Example 29 

 

Let X = {a,b,c}, 4  = { , X, {a}, {a, c}} and ≤3 = {(a, a), (b, 

b), (c, c), (a, b), (a, c)}. Clearly (X, ,4  
≤3) is a topological 

ordered space. dg-closed sets are  , X, {a, b }. d-closed sets 

are  , X . ig-closed sets are  , X, {b} and i-closed sets are 

 , X {b}. Clearly every ig-closed set is an i-closed set. Let A 

= {a, b }. Clearly A is a dg-closed set but not a d-closed set. 

Hence (X, ,4  
≤3) is a iTi,1/2 space but not a dTd,1/2 space. 

 
 

Example 30 
 

Let X = {a,b,c}, 2  = { , X, {a}} and ≤1 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2  
≤1) is a topological ordered 

space. dg-closed sets are  , X. d-closed sets are  , X . ig-

closed sets are  , X, {c}, {b, c} and an i-closed sets are  , X, 

{b, c}. Clearly every dg-closed set is a d-closed set. Let A = 
{c}. Clearly A is an ig-closed set but not a i-closed set. Hence 

(X, ,2  
≤2) is a dTd,1/2 space but not a iTi,1/2 space. 

 
 

Theorem 21: The spaces dTd,1/2 and dTb are independent 

notions as will be seen in the following examples 
 

Example 31 
 

Let X = {a,b,c}, 4  = { , X, {a}, {a, c}} and ≤3 = {(a, a), (b, 

b), (c, c), (a, b), (a, c)}. Clearly (X, ,4  
≤3) is a topological 

ordered space. dg-closed sets are  , X, {a, b}. d-closed sets 

are  , X. b-closed sets are  , X . Clearly every d-closed set is 

a b-closed set. Let A = {a, b}. Clearly A is a dg-closed set but 

not a d-closed set. Hence (X, ,4  
≤3) is a dTb space but not a 

dTd,1/2 space. 
 

 

Example 32 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a,b}} and ≤4 = {(a, 

a), (b, b), (c, c), (a, b), (c, b)}. Clearly (X, ,1  
≤4) is a 

topological ordered space. Here b-closed sets are  , X . d-

closed sets are  , X, {c, a}. dg- closed sets are  , X, {c, a}. 

Let A = {a, c}. Clearly A is a d-closed set but not a b-closed 

set. Every dg-closed set is a d-closed set where as every d-

closed set is not a b-closed set. Thus (X, ,1 ≤4) is a dTd,1/2 space 

and not a dTb space. 



 

 

 

 

Theorem 22: The spaces iTi,1/2 and cTd are independent 

notions as will be seen in the following examples 
 

Example 33 
 

Let X = {a, b, c}, ,1  = { , X, {a}, {b},{a,b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,1  
≤1) is a 

topological ordered space. Here d-closed sets are  , X. i-

closed sets are  , X, {c}, {b, c} .ig- closed sets are  , X, {c}, 

{b, c}. Let A = {c} or {b, c} or {a, c}. Clearly A is a closed set 

but not a d-closed set. Every ig-closed set is an i-closed set 

where as every closed set is not a d-closed set. Thus (X, ,1 ≤1) 

is a iTi,1/2 space and not a cTd space. 

 

 

Example 34 
 

Let X = {a,b,c}, 2  = { , X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2  
≤2) is a topological ordered 

space. ig-closed sets are  , X, {b}, {a, b }. d-closed sets are 

 , X, {b, c}. i-closed sets are  , X and closed sets are  , X, 

{b, c}. Clearly every closed set is a d-closed set. Let A = {b} or 

{a, b}. Clearly A is an ig-closed set but not an i-closed set. 

Hence (X, ,2  
≤2) is a cTd space but not a iTi,1/2 space. 

 

 

Theorem 23: The spaces iTi,1/2 and iTb are independent 

notions as will be seen in the following examples 

 

Example 35 
 

Let X = {a,b,c}, 2  = { , X, {a}} and ≤2 = {(a, a), (b, b), (c, 

c), (a, b), (c, b)}. Clearly (X, ,2  
≤2) is a topological ordered 

space. ig-closed sets are  , X, {b}, {a, b }. b-closed sets are 

 , X. i-closed sets are  , X. Clearly every i-closed set is b-

closed set. Let A = {b} or {a, b}. Clearly A is an ig-closed set 

but not an i-closed set. Hence (X, ,2  
≤2) is a iTb space but not 

a iTi,1/2 space. 

 

 

Example 36 
 

Let X = {a, b, c}, ,1  = { , X, {a},{b},{a,b}} and ≤1 = {(a, 

a), (b, b), (c, c), (a, b), (b, c), (a, c)}. Clearly (X, ,1  
≤1) is a 

topological ordered space. Here b-closed sets are  , X . i-

closed sets are  , X, {b}.ig- closed sets are  , X, {b}, {a, b}. 

Let A = {b} or {a, b} . Clearly A is an ig-closed set but not an 

i-closed set. Every i-closed set is a b-closed set where as every 

ig-closed set is not  an  i-closed  set.  Thus  (X, ,1 ≤1)  is  a  iTb 
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space and not a iTi,1/2 space. 
 
 

Theorem 24: Every dTd,1/2 is a dT1/2 space 
 

Proof 
 

Let (X,  , ≤) be dTd,1/2 space. we show that (X,  , ≤) is a dT1/2 

space. Let A be a dg-closed set. Since (X,  , ≤) is dTd,1/2 space 

then A is a d-closed set. Then A is a closed set. Thus every dg-

closed set is a closed set. Thus every dTd,1/2 space is dT1/2 space. 
The converse of the above theorem need not be true. This 

will be justified from the following example. 
 
 

Example 37 
 

Let X = {a,b,c}, 4  = { , X, {a}, {a, c}} and ≤2 = {(a, a), (b, 

b), (c, c), (a, b), (c, b)}. Clearly (X, ,4  
≤2) is a topological 

ordered space. dg-closed sets are  , X, {b, c }. Closed sets are 

 , X, {b}, {b, c}. d-closed sets are  , X . Clearly every dg-

closed set is a closed set. Let A = {b, c}. Clearly A is a dg-

closed set but not a d-closed set. Hence (X, ,4  
≤2) is a dT1/2 

space but not a dTd,1/2 space. 
 
 

Theorem 25: Every iTi,1/2 is a iT1/2 space 
 

Proof 
 

Let (X,  , ≤) be iTi,1/2 space. we show that (X,  , ≤) is a iT1/2 

space. Let A be an ig-closed set. Since (X,  , ≤) is iTi,1/2 space 

then A is an i-closed set. Then A is a closed set. Thus every ig-

closed set is a closed set. Thus every iTi,1/2 space is iT1/2 space. 

The converse of the above theorem need not be true. This will 

be justified from the following example. 
 
 

Example 38 
 

Let X = {a,b,c}, 4  = { , X, {a}, {a, c}} and ≤6 = {(a, a), (b, 

b), (c, c), (b, a), (a, c), {b, c) }. Clearly (X, ,4  
≤6) is a 

topological ordered space. ig-closed sets are  , X, {b, c}. 

Closed sets are  , X, {b}, {b, c}. i-closed sets are  , X. 

Clearly every ig-closed set is a closed set. Let A = {b, c}. 
Clearly A is an ig-closed set but not an i-closed set. Hence (X, 

,4  
≤2) is a iT1/2 space but not a iTi,1/2 space. 

 
 

Theorem 26: Every bTb,1/2 is a bT1/2 space 
 

Proof 
 

Let (X,  , ≤) be bTb,1/2 space. We show that (X,  , ≤) is a bT1/2 

space. Let A be a bg-closed set.  Since (X,  , ≤) is bTb,1/2 space 
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then A is a b-closed set. Then A is a closed set. Thus every bg-

closed set is a closed set. Thus every bTb,1/2 space is bT1/2 space. 
The converse of the above theorem need not be true. This 

will be seen in the following example. 

 

 

Example 39 

 

Let X = {a,b,c}, 2  = { , X, {a}, {a, c}} and ≤3 = {(a, a), (b, 

b), (c, c), (a, b), (a, c)}. Clearly (X, ,2  
≤3) is a topological 

ordered space. bg-closed sets are  , X, {c}. Closed sets are 

 , X, {b, c} . b-closed sets are  , X . Clearly every dg-closed 

set is a closed set. Let A = {b, c}. Clearly A is a dg-closed set 

but not a d-closed set. Hence (X, ,4  
≤2) is a dT1/2 space but 

not a dTd,1/2 space. 

 

 

CONCLUSION 
 

In this paper, we introduced iTi,1/2, dTd,1/2, bTb,1/2, iT1/2, dT1/2, bT1/2, 
new class of spaces using g-closed type sets in topological 

ordered spaces and studied various relationships between them. 
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